Microbiological Specifications for Foods: Developing Specifications and Testing Options for Out of Specification Results

Loralyn Ledenbach
WAFP Meeting

June 13, 2017
Setting micro specs for foods should be simple, right?

- There would be two options based on my micro test results:
But in reality, it’s kinda complicated

- Acceptance criteria
 - Acceptable for a production run?
 - Acceptable by your customer?

- Food safety/quality objectives
 - Food safety is non-negotiable (or is it?)
 - Quality attributes differ by customer and what they want to pay for

- Economic concerns
 - How many samples to take without “breaking the bank”
 - Is your customer willing to pay more for a higher number of samples

- Regulatory requirements
 - Supply chain verification activities

- What is a batch or lot?
 - Gets back to economic concerns again
Agenda

- ICMSF sampling plans
- 2-class vs. 3-class plans: pros and cons
- Product category sampling plans and specifications
- Sampling plans: normal vs. problem resolution vs. OOS
- Out of Specification (OOS) – what it means for provider vs. customer
- Regulatory considerations
- COA’s and COA verification
- Lot definition
ICMSF Sampling Plans

- Discusses:
 - Food Safety Objectives
 - Acceptance Criteria/Establishing Micro Criteria for Lot Acceptance
 - Concepts of Probability and Principles of Sampling
 - Sampling Plans
 - Selection of Cases for Sampling Plans
 - Tightened, Reduced, and Investigational Sampling
 - Using 2-Class Plans
 - Examples of specific food safety objectives for selected product categories
2-Class Sampling Plans

- Have single limits for each microorganism
- Typically test a single sample for the quantitative tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Limit</th>
<th>Individual or Composite?</th>
<th>Reporting Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic Plate Count</td>
<td><1,000</td>
<td>I</td>
<td>Per gram</td>
</tr>
<tr>
<td>Coliform</td>
<td><10</td>
<td>I</td>
<td>Per gram</td>
</tr>
<tr>
<td>Yeast</td>
<td><100</td>
<td>I</td>
<td>Per gram</td>
</tr>
<tr>
<td>Mold</td>
<td><100</td>
<td>I</td>
<td>Per gram</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Negative</td>
<td>C</td>
<td>Per 375 grams (15x25g)</td>
</tr>
</tbody>
</table>
3-Class Sampling Plans

- Have little “m” and big “M” limits for each microorganism
- Have to minimally test 5 samples for the quantitative tests

<table>
<thead>
<tr>
<th>Test</th>
<th>I/C</th>
<th>n</th>
<th>c</th>
<th>m</th>
<th>M</th>
<th>Reporting Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic Plate Count</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>1,000</td>
<td>10,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Coliform</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>100</td>
<td>Per gram</td>
</tr>
<tr>
<td>Yeast</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>100</td>
<td>1,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Mold</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>100</td>
<td>1,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Salmonella</td>
<td>C</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Per 375 grams (15x25g)</td>
</tr>
</tbody>
</table>
2-class vs. 3-class

- 2-Class sampling plans
 - Simple pass or fail criteria
 - Sample is acceptable or unacceptable (2 classes)
 - Does not take into account sampling variability or microorganism distribution
 - Does not allow for test method variability
 - Typically used for qualitative or zero-tolerance pathogen testing
 - Need to know whether or not the pathogen is in the food
 - Probability of finding the pathogen depends on sampling and compositing schemes
 - Economically viable
 - Single sample per batch/lot is tested for quantitative results
2-class vs. 3-class

- **3-Class sampling plans**
 - More accurate, but complex pass or fail criteria
 - Sample is acceptable, marginal, or unacceptable (3 classes)
 - Factors in sampling variability and the heterogeneous distribution of microorganisms in a sample
 - Can help take into account method variability
 - Not really applicable for qualitative or zero-tolerance pathogen testing
 - Rarely, if ever used for this
 - More expensive
 - More samples have to be taken and tested
Provider vs. Customer Micro Specifications

- Provider will often use 2-class sampling plans for their in-house product specifications
 - They know their process capability
 - They have the history of product performance

- Customers more commonly ask for micro spec limits in 3-class plan format (with the exception of zero-tolerance pathogen testing)
 - Allows for provider to accommodate the variability in sampling and test methods
 - Limits can be set tighter because of this flexibility
 - Can negotiate to have provider test using 2-class, but agree to meeting 3-class limits, for cost savings
Provider vs. Customer Micro Specifications – Onion Powder Example

- **Setting actual number limits**
 - Customer wants

<table>
<thead>
<tr>
<th>Test</th>
<th>I/C</th>
<th>n</th>
<th>c</th>
<th>m</th>
<th>M</th>
<th>Reporting Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic Plate Count</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>10,000</td>
<td>100,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Coliform</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>100</td>
<td>Per gram</td>
</tr>
<tr>
<td>Yeast</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>100</td>
<td>1,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Mold</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>100</td>
<td>1,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Lactic Acid Bacteria</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>10,000</td>
<td>50,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Salmonella</td>
<td>C</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Per 375 grams (15x25g)</td>
</tr>
</tbody>
</table>
Provider vs. Customer Micro Specifications – Onion Powder Example

- Provider can provide (depending on cost)

<table>
<thead>
<tr>
<th>Test</th>
<th>I/C</th>
<th>n</th>
<th>c</th>
<th>m</th>
<th>M</th>
<th>Reporting Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic Plate Count</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>1,000,000</td>
<td>10,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Coliform</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>1,000</td>
<td>10,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Yeast</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>10,000</td>
<td>100,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Mold</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>10,000</td>
<td>100,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Lactic Acid Bacteria</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>100,000</td>
<td>500,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Salmonella</td>
<td>C</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Per 375 grams (15x25g)</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Test</th>
<th>I/C</th>
<th>n</th>
<th>c</th>
<th>m</th>
<th>M</th>
<th>Reporting Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic Plate Count</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>100,000</td>
<td>1,000,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Coliform</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>100</td>
<td>1,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Yeast</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>1,000</td>
<td>10,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Mold</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>1,000</td>
<td>10,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Lactic Acid Bacteria</td>
<td>I</td>
<td>5</td>
<td>2</td>
<td>50,000</td>
<td>100,000</td>
<td>Per gram</td>
</tr>
<tr>
<td>Salmonella</td>
<td>C</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Per 375 grams (15x25g)</td>
</tr>
</tbody>
</table>
Micro specifications for different product categories

- Dependent on the processing of the product
- RTE products that have been processed (pasteurized, cooked, etc.)
 - APC, EB/colliforms, lactic bacteria, yeast, mold limits should be low
- RTE fermented/cultured products
 - No APC or lactic bacteria testing, but EB/colliforms, yeast, and mold should still be low
- RTE dried products (i.e. herbs, spices)
 - APC, Lactic acid bacteria, yeast, mold will be higher
 - EB/colliforms should still be relatively low
 - Customer needs drive spec limits, negotiations are common by price, could use lot selection
- RTE produce
 - Specifications for APC, etc. are less common
- Frozen products
 - RTE frozen - typically set the same as for RTE counterparts
 - Frozen partially processed – more negotiable, depends on customer needs
- Raw products
 - Rare to have micro spec limits – one exception is Grade A raw milk
Sampling to determine normal production capability (for quantitative tests)

- Typically use a 2-class sampling plan
 - Can have a preset limit based on previous history
 - Or, can have a “disaster check” limit
 - When running new products with no known history

- Multiple samples are taken throughout the day or lot (tightened sampling)
 - Can use these to determine probability of having a single sample with an out of specification result

- Data is used to set or determine running limits

- After limits are finalized, can scale back number of samples taken throughout the day (reduced sampling)
Sampling for OOS

- If provider has agreed to micro specification limits in 3-class plan format, but only tests according to a 2-class scheme:
 - Can go back and test additional samples to meet the 3-class limits if the single sample is between “m” and “M”
 - There is a limit to this however, as provider should not test unlimited samples in order to find 5 “good ones”

- This is the most economically feasible, while still guaranteeing the food quality objectives for both parties

- If material is still out of specification, then provider should move to investigational mode
What does OOS Mean? For the provider

- A particular sample from production does not meet the specification limits set for it
 - Spec limits represent normal production (including process capability)
- Product may or may not go on hold for further testing and investigation
 - Additional samples can be tested to determine if the result was an outlier, or caused by sampling error
 - If the cause is known or can be easily determined, product may still be acceptable and may still meet customer’s limits
 - If cause is unknown, further testing should be conducted to determine source of higher numbers
What does OOS mean? For the customer

- A particular sample from the provider does not meet the customer’s quality standards for the product
 - Could cause quality defects in customer’s finished products
 - Could cause defects further down the supply chain to the customer’s customers
 - May not be getting the quality they paid for

- Product may or may not be returned to provider
 - Customer may choose to do additional sampling to determine if result was an outlier
 - Customer may choose to use product, but add in additional process controls to eliminate the concern
 - Often done if the material is rare or difficult to procure, or if customer is on a tight timeline

- Negotiations with provider can be conducted to mitigate the customer’s additional costs
Sampling during investigations

- Often involves product that has already been released to market
 - Report of an issue from the field
 - Customer complaint
 - Unexpected spoilage issue

- Used to determine the cause of a particular problem or out of specification result

- Help to decide what to do with a product
 - Determining if entire lot is unacceptable, or if can still release some portions of the lot

- Help to prevent the problem for recurring
 - Determine source of problem (personnel, environment, raw material)
Sampling during investigations

- Micro specification limits during investigation
 - Product and raw material micro limits should remain the same as current specification limits
 - Sampling schemes should move to tightened
 - Raw materials not routinely tested, or where a COA is relied upon, should be tested per the specification sampling scheme (typically 3-class)
 - All lots of the raw material should be tested
Regulatory considerations for micro specifications

- PMO Grade A standards
 - Specific micro limits set for Grade A products
- USDA HACCP
 - Validation of Critical Control Points
- Seafood HACCP and Juice HACCP
 - Validation of Critical Control Points
- Preventive Controls for Human Food, Animal Food, Produce Safety (FSMA)
 - Validation of Process Controls
 - Supply Chain Verification
COAs and COA Verification

- For food safety, COAs can be used as a verification activity for a material where the supplier applies the pathogen control.
- COAs can also be used for verifying the microbial load coming in on raw ingredients, to assure the effectiveness of the process controls being used for microorganism reduction.
- Information on COAs coming from suppliers should be periodically verified by testing additional samples from the same lot of material at another laboratory:
 - New suppliers – tightened sampling (i.e. first 10 lots received)
 - Established suppliers – reduced sampling (i.e. quarterly)
Lot definition

- Often thought of as one day’s production = one lot
- What about 5-day runs?
- What about dried products with 3-4 week runs?
- If a producer makes 3 hours of another customer’s product, then switches to 4 hours of making your product, what happens when the other customer’s product is out of specification?
Thank you