FORMULATING FOODS TO CONTROL BACTERIAL PATHOGENS

Kathleen Glass, Ph.D.
1550 Linden Drive, Madison, WI 53706
Email: kglass@wisc.edu

Wisconsin Association for Food Protection Food Safety Workshop
June 13, 2017, Madison, WI
Agenda

• Background
 • Food safety risks

• Critical factors controlling microbial growth
 • Available moisture (water activity)
 • Acidity (pH)
 • Ingredients with antimicrobial activity

• Validating formulation as a preventive control in food safety plan
 • Examples of controlling bacterial pathogens
Microbes Cause Foodborne Illness

• 48 Million episodes of foodborne illness per year
 • Viruses, bacteria, parasites
• 128,000 hospitalizations
 • *Salmonella*, *Campylobacter*, Norovirus
• 3,000 deaths
 • *Salmonella*, *Listeria monocytogenes*
 • *Toxoplasma gondii*
• Economic impact
 • Direct medical costs & lost wages
 • Recall costs and litigation/liability
 • Peanut butter – *Salmonella* 2008-2009, Recall cost $50-60 million; Peanut Corp. Am. bankrupt

Scallon et al., 2011; University of Florida Emerging Pathogens Institute, 2011
Factors that contribute to foodborne illness (typically more than one)

| Contamination of raw commodities | Flour, *E. coli* O121 and O26
Soynut butter, *E. coli* O157:H7
Raw milk gouda, *E. coli* O157:H7
Sprouts, *Salmonella* |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow acid development</td>
<td>Staphylococcus aureus cheese, yogurt, fermented sausage</td>
</tr>
</tbody>
</table>
| Improper hot-holding temperature | *Clostridium perfringens*, buffets, catering
Clostridium botulinum, nacho cheese sauce |
| Recontamination of products | *Listeria monocytogenes*, ice cream |
| Ability of microbes to grow at refrigeration temperatures | *Listeria monocytogenes*, packaged salads |
| Lack of growth inhibitors | *Listeria monocytogenes*, soft, high pH cheeses |
| Temperature abuse | *Clostridium botulinum*, carrot juice |
| Susceptible Consumers | *Listeria monocytogenes*, cantaloupe |
Bacterial Pathogens: General Concepts

- Pathogens generally found at low levels
- Pathogens do not always cause spoilage
- Can survive or grow in adverse conditions
 - Survive cooking; grow under refrigeration temperatures
- Infectious dose varies
- Toxin formation requires growth
 - *No growth = no toxin = no illness*
 - *Examples: S. aureus, B. cereus, C. botulinum*
 - Growth can occur in hours, days or weeks
Formulation Strategies Focus on Gram Positive Bacteria

- Tend to be more resistant to thermal inactivation (especially spores)
- Typically require growth to cause illness

- Vegetative pathogens
 - *Listeria monocytogenes*
 - *Staphylococcus aureus*

- Sporeforming bacteria
 - *Bacillus cereus*
 - *Clostridium perfringens*
 - *Clostridium botulinum*
Do not rely on temperature alone

- Cooking/pasteurization is not perfect
 - Spores survive heating
 - Post-pasteurization contamination
- Temperature abuse is common
 - During distribution, transportation, consumer homes, power-outages
- Growth of psychrotrophic pathogens
 - *Listeria monocytogenes*
 - Some *Clostridium botulinum* strains
 - Some *Bacillus cereus* strains
Formulating Foods for Safety

- Goal: Maintain safety through the point of consumption
 - Delay pathogen growth until gross spoilage
- Requires understanding of microbial physiology and ecology in foods
 - Adequacy of control depends on target microbe
- Consider whole food, individual components, and interfaces of components
Critical Factors for Formulation

- Available moisture
 - Water activity a_w
 - Function of moisture, salt, other ingredients
- pH
 - Acid type, titratable acidity
- Addition of growth inhibitors
 - Preservatives (synthetic or clean label/”natural”)
 - Additive or synergistic interaction means that lower levels of each factor can be used
 - Less effect on sensory attributes
- Use in combination with temperature control
pH and a$_w$ combinations that inhibit growth of vegetative cells and spores

<table>
<thead>
<tr>
<th>Critical a$_w$ values</th>
<th>Critical pH values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><4.2</td>
</tr>
<tr>
<td><0.88</td>
<td>No growth</td>
</tr>
<tr>
<td>0.88 – 0.90</td>
<td>No growth</td>
</tr>
<tr>
<td>>0.90 – 0.92</td>
<td>No growth</td>
</tr>
<tr>
<td>>0.92</td>
<td>No growth</td>
</tr>
</tbody>
</table>

? = Requires time/temperature control unless product testing demonstrates otherwise

Antibacterial ingredients

- Secondary barrier during temperature abuse or mishandling
- Typically bacteriostatic (delays growth, does not kill)

<table>
<thead>
<tr>
<th>Synthetic</th>
<th>Clean Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactate*, propionate*</td>
<td>Cultured sugar, cultured milk</td>
</tr>
<tr>
<td>Diacetate*, acetic acid*</td>
<td>Dry vinegar, buffered vinegar</td>
</tr>
<tr>
<td>Nitrite*</td>
<td>Cultured celery</td>
</tr>
<tr>
<td>Erythorbate, ascorbate*</td>
<td>Acerola cherry powder</td>
</tr>
<tr>
<td>Sorbic acid</td>
<td>None (derived from rowanberries)</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>Cranberries, prunes, plums, cinnamon</td>
</tr>
<tr>
<td>Phenolics, flavonoids</td>
<td>Fruit / spice extracts</td>
</tr>
</tbody>
</table>

* Clean label substitute with documented efficacy
Limitations of Preservatives

- **NOT** a substitute for good manufacturing practices
 - Component of food safety plan: preventive controls
- Consumer acceptance, effect on sensory, functional attributes, cost
- Efficacy affected by food components
 - Fat level (solubility), moisture, temperature, pH, nitrite, smoke,
- Competitive microflora may also be inhibited
Validating Formulation Safety

- Validation establishes the scientific basis for process preventive controls in the Food Safety Plan
 - Ex. Validate critical limit values for process controls
- May include:
 - Using scientific principles and data
 - Use of expert opinion (including predictive models)
 - Challenging the process at the limits of its operating controls
- Performed or overseen by a preventive controls qualified individual (PCQI)
Assessing Risks

- Specific for a given food/characteristics
- Requires understanding of:
 - Likelihood of contamination
 - Processing and handling in facility
 - Distribution
 - Shelf-life
 - Quality based on microbial changes vs. organoleptic changes
 - Temperature of storage
 - Potential use/abuse at retail, consumer level
VALIDATING FORMULATION SAFETY EXAMPLES

Effect of formulation on processed meat
 Listeria monocytogenes (extended refrigerated storage)
 Clostridium perfringens (cooling)

Effect of formulation on natural cheese
 Listeria monocytogenes

Effect of formulation on process cheese
 Staphylococcus aureus
 Clostridium botulinum

Effect of formulation on refrigerated meals
 Clostridium botulinum
High moisture RTE Meats
L. monocytogenes, 41°F (5°C), no growth inhibitors

Critical factors
- Competitive microflora
- pH, moisture
- Nitrite

Glass and Doyle, AEM, 1989
Buffered vinegar, moisture, pH
Uncured RTE Meats: L. monocytogenes

Turkey: ~73% moisture, pH 6.15, 1.1% NaCl, no nitrite
Beef: ~66% moisture, pH 5.75, 0.6% NaCl, no nitrite

Change Populations L. monocytogenes (Log CFU/g)

- Turkey Control No Antimicrobials
- Beef Control No Antimicrobials
- Turkey - 2.0% buffered vinegar
- Beef - 2.0% buffered vinegar

Adapted from JFP 76:1366, 2013
Similar results with 1.5% lemon/cherry/vinegar blend; 3.0% cultured sugar-vinegar blend
Effect of nitrite source + cure accelerator, *Clostridium perfringens*, 15 h biphasic cooling, cured meats, Appendix B

- Deli turkey model system
 - 74% moisture, 1.3% NaCl, pH 6.3
- No effect of conventional versus alternative (natural) ingredients
- 100 ppm nitrite alone not sufficient
 - Requires ascorbate for inhibition

King, et al., J. Food Prot. 78: 1527-1535.
ComBase Perfringens Predictor
Effect of pH and NaCl, cured meat (NaNO₂)
No erythorbate in model, *Clostridium perfringens*

Similar trends in ham with 156 ppm nitrite plus 547 erythorbate cooled over 25 h
Effect of cultured dairy solids (clean label antimicrobial) on *L. monocytogenes* on Reduced Salt Mozzarella

Same trends, but less differences (more growth) at pH 6.0
Effect of acid type, pH, and moisture on *L. monocytogenes*

Lactic Acid

Acetic Acid
Process cheese slices, 85°F

Results: no growth
L. monocytogenes
E. coli O157:H7
Salmonella
B. cereus

Variable growth Staph
Growth at 1-7 days; pH>5.6, no sorbate

Population at which staphylococcal enterotoxin is detected

Upper SD of growth for S. aureus

Average S. aureus

Minimum detection limit

40% moisture for Cheddar based
20 formulations tested; Staph greatest variation for growth

FRI, Unpublished data, 2001
Sponsored by DMI
S. aureus on process cheese and cheese food
Effect of pH and water activity/moisture

All formulations contain 0.2% potassium sorbate

- Pepper Jack (45% moisture, pH 5.5, 1.7% NaCl, aw 0.945)
- American (43% moisture, pH 5.3, 1.8% NaCl, aw 0.955)
- Cheddar2 (42% moisture, pH 5.3, 2.0% NaCl, aw 0.955)
- Cheddar1 (42% moisture, pH 5.6, 1.8% NaCl, aw 0.945)
- Cheddar3 (40% moisture, pH 5.3, 2.5% NaCl, aw 0.935)

FRI, unpublished data, 2004; sponsored by industry
Formulation Safety for Process Cheese Spread
FRI Model (aka Tanaka Model)

Safety factors for control of Clostridium botulinum in shelf-stable process cheeses

- Moisture
- pH
- Sodium chloride
- Sodium phosphate
- Not modeled
 - Aw
 - lactate

Tanaka et al, 1986 JFP
Formulation safety for non-standard process cheese: sorbic acid and *Clostridium botulinum*

<table>
<thead>
<tr>
<th>moisture</th>
<th>pH</th>
<th>NaCl</th>
<th>DSP</th>
<th>total salts</th>
<th>fat</th>
<th>sorbic acid</th>
<th>Predicted time to toxicity (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.0</td>
<td>5.8</td>
<td>2.0</td>
<td>1.7</td>
<td>3.70</td>
<td>22</td>
<td>0</td>
<td>FRI 2017: 7</td>
</tr>
<tr>
<td>54.0</td>
<td>5.8</td>
<td>2.0</td>
<td>1.7</td>
<td>3.70</td>
<td>22</td>
<td>0.1</td>
<td>FRI 1986: 7</td>
</tr>
<tr>
<td>54.0</td>
<td>5.8</td>
<td>2.0</td>
<td>1.7</td>
<td>3.70</td>
<td>22</td>
<td>0.15</td>
<td>FRI 2017: 80</td>
</tr>
<tr>
<td>54.0</td>
<td>5.8</td>
<td>2.0</td>
<td>1.7</td>
<td>3.70</td>
<td>22</td>
<td>0.2</td>
<td>FRI 1986: 7</td>
</tr>
</tbody>
</table>

Note: 2017 model validation in progress
Probability of failure for 2017 model set to 0.001
Use for guidance only for product developers
Cultured celery, pH, product matrix
Refrigerated foods:
Proteolytic *C. botulinum*

<table>
<thead>
<tr>
<th>Matrix</th>
<th>pH</th>
<th>Treatment</th>
<th>Storage Temp °F</th>
<th>Toxicity (wk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dijon Pork</td>
<td>6.0</td>
<td>Control</td>
<td>59</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cultured Celery (80 ppm NO₂)</td>
<td>59</td>
<td>>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td>Cauliflower-potatoes</td>
<td>5.5</td>
<td>Control</td>
<td>59</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cultured Celery (60 ppm NO₂)</td>
<td>59</td>
<td>>8</td>
</tr>
</tbody>
</table>

Golden et al., 2017, JFP, in press

Received “non-prot botulinum cook” 90°C, 10 min
Tested for toxin weekly
No toxicity for pH ≤6.0 during storage for 8 weeks at 50°F
Dry vinegar, Fruit-Spice Blend, pH
Uncured Chicken: *C. botulinum* Time to toxin production

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>pH 6.15</th>
<th>pH 6.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.5% Dry Vinegar + 0.6% Fruit-Spice-Vinegar blend</td>
<td>Control + 0.5% Dry Vinegar + 0.6% Fruit-Spice-Vinegar blend</td>
</tr>
<tr>
<td>77</td>
<td>2 d</td>
<td>2 d</td>
</tr>
<tr>
<td>55</td>
<td>1 mo</td>
<td>1 mo</td>
</tr>
<tr>
<td>45</td>
<td>>6 mo</td>
<td>1 mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 mo</td>
</tr>
</tbody>
</table>
Summary

• Formulation alone will not guarantee safety
 • Heat or alternative pasteurization
 • Proper sanitation
 • Part of the well designed food safety system
• Factors to consider
 • Storage temperature distribution, at retail, by consumers
 • Water activity, pH/total acidity
 • Synthetic and clean label antimicrobials
• Requires that manufacturing specifications are met
• Success also depends on education and cooperation of consumer for safe food handling
Acknowledgements

- FRI Applied Food Safety Lab
- Meat and Muscle Biology Lab
- WI Center for Dairy Research

Funding
- University of Wisconsin Foundation
- North American Meat Institute Foundation
- USDA
- Dairy Management Inc.
- FRI Summer Scholar Program
- International Dairy Foods Association
- Wisconsin Association of Meat Processors
- Industry support
FSPCA PCQI Training (Human Foods)

- UW-Madison August 22-24, 2017
 - 2.5 day standard curriculum
- Blended Course
 - Part 1 online
 - Part 2 instructor-led
- Other courses held around US, several times per month
 - See https://fspca.force.com for registration links
 - Upcoming classes in WI
 - Cherney Microbiology
 - Covance
 - NSF
 - Safe Food Resources